
Theorem: For all 𝑛 ≥ 2, there is a prime number p such that 𝑛 < 𝑝 < 2𝑛 

Recommended levels for proof: 4 

Proof: 

The idea is to study the binomial coefficient (2𝑛
𝑛

) since these numbers have nice properties and you 

will see that this can be exploited to deduce a lot of things, in particular the theorem above. 

Lemma 1: Define 𝑅(𝑛, 𝑝) for a prime number p to be the largest number r such that (2𝑛
𝑛

) is divisible by 

𝑝𝑟. Then 𝑝𝑅(𝑛,𝑝) ≤ 2𝑛. 

Proof of Lemma 1: 

We define floor x or ⌊𝑥⌋ to mean the largest integer less than or equal to x. We want to determine how 
many times p appears in the prime factorization of 𝑛!.  Note that we get one appearance of p for each 

multiple of p less than m, and there are ⌊𝑛

𝑝
⌋ of those. For non-multiples of p less than n nothing 

happens since there is no p in the prime factorization of those. However, we are not done: For all 
multiples of 𝑝2 we have only counted one of the two or more p’s that appear. Therefore we have an 

extra ⌊ 𝑛

𝑝2⌋ copies of p in the prime factorization, but then for multiples of 𝑝3 we need an extra ⌊ 𝑛

𝑝3⌋ 

copies, and so on. The formula is ∑ ⌊
𝑛

𝑝𝑗⌋∞
𝑗=1 . Therefore the number of times p appears in the prime 

factorization of (2𝑛
𝑛

) =
(2𝑛)!

(𝑛!)2 is ∑ ⌊
2𝑛

𝑝𝑗⌋∞
𝑗=1 − 2 ∑ ⌊

𝑛

𝑝𝑗⌋∞
𝑗=1 = ∑ (⌊

2𝑛

𝑝𝑗⌋ − 2 ⌊
𝑛

𝑝𝑗⌋)∞
𝑗=1  

Now each term in the sum is either 0 or 1, because for any arbitrary x, ⌊2𝑥⌋ − 2⌊𝑥⌋ = 2⌊𝑥⌋ − 2⌊𝑥⌋ is 0 
whenever the non-integer part of x is strictly less than 0.5, and 1 otherwise (as ⌊2𝑥⌋ is 1 + 2⌊𝑥⌋ in that 

case). But when 𝑗 > log𝑝(2𝑛), both ⌊2𝑛

𝑝𝑗⌋ and ⌊ 𝑛

𝑝𝑗⌋ are 0 so the term is 0, and also 𝑛

𝑝𝑗 is less than 0.5 so 

by the logic above the term is 0. Therefore there are at most log𝑝(2𝑛) terms that contribute 1. Since 
this is the number of powers of p in the prime factorization, so these terms contribute something at 
most 2n, which is exactly what the lemma claimed. 

Lemma 2: No prime factors p of (2𝑛
𝑛

) satisfy 2𝑛

3
< 𝑝 ≤ 𝑛 (unless p=2) 

Proof of lemma 2:  

Since p is at least 3 and greater than 2𝑛

3
, 𝑝2 > 2𝑛 so the number of copies of p in (2n)! is ⌊2𝑛

𝑝
⌋ which is 2 

by definition, but the number of copies in (𝑛!)2 is 2 ⌊
𝑛

𝑝
⌋ = 2 ∗ 1 = 2, so in 

(2𝑛)!

(𝑛!)2 we get 2-2=0 copies. 

Lemma 3: Define n# as the product of all primes less than or equal to n (1#=1 by convention). Then 
the lemma says that for all 𝑛 ≥ 1, 𝑛# < 4𝑛.  

Proof of lemma 4: 

We note that 2#=2, so for n=1 and n=2 the lemma holds. We will now use strong induction to prove the 
lemma. If we are in the case that we have proven it for everything up to an odd number and trying to 
prove it for the next number which is even, then it is trivial as an even number greater than 2 will not 
increase the size of n# since it is not prime, so if it was less than 4𝑛 it will stay that way. So lets 
assume we have proven it for all integers 1 to 2k and we want to prove it for 2k+1. Now consider the 



binomial coefficient (2𝑘 + 1
𝑘

) =
(2𝑘+1)!

𝑘!(𝑘+1)!
. All primes from k+2 to 2k+1 inclusive only appear once in the 

numberator, so the product of all such primes divides (2𝑘 + 1
𝑘

), and is therefore less than or equal to 

(
2𝑘 + 1

𝑘
). We see the first hint of primes from a number to double that number which is a good sign 

that we are headed in the right direction. But (2𝑘 + 1
𝑘

) = (
2𝑘 + 1
𝑘 + 1

) by symmetry of the choose 

function (Choosing k things and not choosing k things can be done in the same number of ways). So 

we now have the chain of inequalities 
(2𝑘+1)#

(𝑘+1)#
≤ (

2𝑘 + 1
𝑘

) =
1

2
((

2𝑘 + 1
𝑘

) + (
2𝑘 + 1
𝑘 + 1

)). Note now that 

the total number of ways to choose some things out of 2k+1 things is 22𝑘+1 as for each thing we either 

choose it or not choose it. Therefore (2𝑘 + 1
𝑘

) + (
2𝑘 + 1
𝑘 + 1

) is strictly less than 22𝑘+1as we have left out 

a lot of possibilities, such as choosing none of the things, or all of them. Therefore 
(2𝑘+1)#

(𝑘+1)#
< 22𝑘. We 

can rearrange this to get (2𝑘 + 1)# < 4𝑘(𝑘 + 1)# < 4𝑘4𝑘+1 < 42𝑘+1 (by the induction hypothesis), so 
we are done. 

Now we will prove the main theorem. 

Lets consider 4
𝑛

2𝑛
. We will suppose there are no primes between n and 2n and then use this to put an 

upper bound on 4
𝑛

2𝑛
, and we will see that this upper bound is rather restrictive. First of all, notice that 

(
2𝑛
𝑛

) is the largest binomial coefficient of the form (2𝑛
𝑘

). This is kind of obvious but I will prove it 

rigorously because it’s not completely obvious. The reason for this is suppose k<n (if k>n the 

symmetry property means the same conclusion happens), then consider 
(

2𝑛
𝑘

)

(
2𝑛
𝑛

)
. We hope to show this is 

less than 1. 
(

2𝑛
𝑘

)

(
2𝑛
𝑛

)
=

(2𝑛)!

𝑘!(2𝑛−𝑘)!
(2𝑛)!

(𝑛!)2

=
(𝑛!)2

𝑘!(2𝑛−𝑘)!
=

1∗1∗2∗2∗3∗3∗…∗𝑛∗𝑛

1∗1∗2∗2∗3∗3∗…∗𝑘∗𝑘∗(𝑘+1)∗(𝑘+2)∗…∗(2𝑛−𝑘)
=

(𝑘+1)∗(𝑘+2)∗…∗(𝑛−1)∗𝑛

(𝑛+1)∗(𝑛+2)∗…∗(2𝑛−𝑘)
. So 

we have n-k terms on both the numerator and the denominator, but each one in the numerator is 
strictly smaller than the ones on the denominator. But we know from earlier discussion that the sum 

of all (2𝑛
𝑘

) as k goes from 0 to 2n is 4𝑛. For all positive integers n, (2𝑛
𝑛

) ≥ 2, so we can combine the 

terms (2𝑛
0

) and (2𝑛
2𝑛

) into 2 and we will then be summing 2n terms in which (2𝑛
𝑛

) is still the largest. 

Therefore if (2𝑛
𝑛

) <
4𝑛

2𝑛
 we have a problem as that is the largest term so we would be summing 2n 

terms that are strictly less than 4
𝑛

2𝑛
 and end up with something less than 4𝑛 which is a contradiction. 

Therefore we start our chain of inequalities with 4
𝑛

2𝑛
≤ (

2𝑛
𝑛

). Since there are no primes between n and 

2n by assumption, it means that by lemma 2 all primes dividing (2𝑛
𝑛

) are less than or equal to 2𝑛

3
. 

That’s is quite restrictive. We write (2𝑛
𝑛

) in terms of its prime factors using product notation as 

(∏ 𝑝𝑅(𝑝,𝑛)
𝑝≥√2𝑛 ) (∏ 𝑝𝑅(𝑝,𝑛)

√2𝑛<𝑝≤
2𝑛

3

) where R is as defined above. This is less than 

(∏ 2𝑛𝑝≥√2𝑛 ) (∏ 𝑝
√2𝑛<𝑝≤

2𝑛

3

) by lemma 1. This is thus less than (2𝑛)√2𝑛−14
2𝑛

3  by lemma 3 and the fact 

that there are clearly not more than √2𝑛 − 1 primes less than √2𝑛. Therefore we have shown that if we 



have a counterexample to the postulate, then 4
𝑛

2𝑛
< (2𝑛)√2𝑛−14

2𝑛

3 . Multiplying through by 2n gives 4𝑛 <

(2𝑛)√2𝑛4
2𝑛

3 . Taking log2  of both sidesgives 2𝑛 <
4𝑛

3
+ √2𝑛 log2(2𝑛), so 2𝑛

3
< √2𝑛 log2(2𝑛), so now  

√2𝑛 < 3 log2(2𝑛), so 2𝑛 < 9 log2
2(2𝑛). The derivative of the right hand side with respect to n is 

𝑑

𝑑𝑥

9 ln2(2𝑥)

ln2(2)
=

𝑑

𝑑𝑥
(ln2(𝑥) (

9

ln2(2)
) + 𝑐) = 2 (

9

ln2(2)
) (

ln(𝑥)

𝑥
) = (

18

ln2(2)
) (

ln(𝑥)

𝑥
) by standard differentiation and 

logarithm rules. We can differentiate again with the quotient rule to get the second derivative. This 

gives ( 18

ln2(2)
)

1−ln (𝑥)

𝑥2
. For all x greater than e, this is negative, so we will have something with 

downwards curvature that has to beat something linear (ie 2n). One can check by computation that 
the inequality 2𝑛 < 9 log2

2(2𝑛) fails for 𝑛 = 427 but not for 𝑛 = 426, therefore since the curvature is 
only downward, 9 log2

2(2𝑛) will never again cross the 2n line so the inequality will always fail after that. 
So any counterexample has 𝑛 < 427. But if 2 ≤ 𝑛 ≤ 426 we can verify that the theorem holds by 
picking one of the primes 3, 5, 7, 13, 23, 43, 83, 163, 317 or 631 depending on what n is. So done. 


