Theorem: For alln = 2, there is a prime number p suchthatn <p < 2n
Recommended levels for proof: 4

Proof:

The ideais to study the binomial coefficient (27?) since these numbers have nice properties and you

will see that this can be exploited to deduce a lot of things, in particular the theorem above.

Lemma 1: Define R(n, p) for a prime number p to be the largest number r such that (27?) is divisible by
p”. Then pRWP) < 2n.

Proof of Lemma 1:

We define floor x or [x] to mean the largest integer less than or equal to x. We want to determine how
many times p appears in the prime factorization of n!. Note that we get one appearance of p for each
multiple of p less than m, and there are EJ of those. For non-multiples of p less than n nothing

happens since there is no p in the prime factorization of those. However, we are not done: For all
multiples of p? we have only counted one of the two or more p’s that appear. Therefore we have an

extra [%J copies of p in the prime factorization, but then for multiples of p3 we need an extra l%J
p p

copies, and so on. The formula is Zj?°=1 lﬁ] Therefore the number of times p appears in the prime

factorization of (2:) = EZ;)Z! is Xiz1 ;—?J —2X5% l%J =21 (E—?J —2 [%J)

Now each term in the sum is either 0 or 1, because for any arbitrary x, |2x| — 2|x] = 2|x| — 2|x] is 0
whenever the non-integer part of x is strictly less than 0.5, and 1 otherwise (as |2x] is 1 + 2|x]| in that

case). Butwhen j > log,(2n), both l;—r;J and l%J are 0 so the termis 0, and also % is less than 0.5 so

by the logic above the term is 0. Therefore there are at most log, (2n) terms that contribute 1. Since
this is the number of powers of p in the prime factorization, so these terms contribute something at
most 2n, which is exactly what the lemma claimed.

Lemma 2: No prime factors p of (21?) satisfyz?n < p < n(unless p=2)
Proof of lemma 2:

Since p is at least 3 and greater than Z?n, p? > 2n so the number of copies of pin (2n)! is l%nj whichis 2

by definition, but the number of copies in (n!)? is 2 EJ —2+1=2,s0in Z—fl))z’we get 2-2=0 copies.

Lemma 3: Define n# as the product of all primes less than or equal to n (1#=1 by convention). Then
the lemma says thatforalln > 1, n# < 4",

Proof of lemma 4:

We note that 2#=2, so for n=1 and n=2 the lemma holds. We will now use strong induction to prove the
lemma. If we are in the case that we have proven it for everything up to an odd number and trying to
prove it for the next number which is even, then it is trivial as an even number greater than 2 will not
increase the size of n# since it is not prime, so if it was less than 4" it will stay that way. So lets
assume we have proven it for all integers 1 to 2k and we want to prove it for 2k+1. Now consider the



All primes from k+2 to 2k+1 inclusive only appear once in the

2k +1
k

). We see the first hint of primes from a humber to double that number which is a good sign

2k + 1) _ (Zk +1
k k+1
function (Choosing k things and not choosing k things can be done in the same number of ways). So

2k + 1) _ (2k+1)!
k T kW(k+D)!

numberator, so the product of all such primes divides (

binomial coefficient (

), and is therefore less than or equal to

(Zk];I—1

that we are headed in the right direction. But ( ) by symmetry of the choose

. . e QE+D# 2k+1\ _1((2k+1 2k+1
we how have the chain of inequalities Y < ( K ) =3 (( K ) + ( K+ 1 )) Note now that

the total number of ways to choose some things out of 2k+1 things is 22¢*1

2kl;|— 1) " (Zkk_{-_l—ll

a lot of possibilities, such as choosing none of the things, or all of them. Therefore

as for each thing we either

choose it or not choose it. Therefore ( ) is strictly less than 2%¥*1as we have left out

Qr+1)#
(k+1)#
can rearrange this to get (2k + 1)# < 4%(k + 1)# < 4k4k+1 < 42%+1 (by the induction hypothesis), so

we are done.

< 22k We

Now we will prove the main theorem.

n
Lets consider z—n. We will suppose there are no primes between n and 2n and then use this to put an

4n . . . . . .
upper bound on o and we will see that this upper bound is rather restrictive. First of all, notice that

2n
k
rigorously because it’s not completely obvious. The reason for this is suppose k<n (if k>n the

()

(2:) is the largest binomial coefficient of the form ( ) This is kind of obvious but | will prove it

symmetry property means the same conclusion happens), then consider—(Zn). We hope to show this is
n
2 (2n)!
less than 1 (’?) = "!(2:"‘)! __my? 1#1%2+25343% .. 404N _ (kD (k4D)xx(nmDen o
: (Zn) - % T kl(2n-k)! 1#1%2#2%3%3x ..k kxk*(k+1)*(k+2)*..x(2n—k) - m+1)*(n+2)*..x(2n—k)
n n!

we have n-k terms on both the numerator and the denominator, but each one in the numerator is
strictly smaller than the ones on the denominator. But we know from earlier discussion that the sum

of all (zl:’

terms (2(;1) and (32) into 2 and we will then be summing 2n terms in which (21?) is still the largest.

n
Therefore if (27?) < :—nwe have a problem as that is the largest term so we would be summing 2n

) as k goes from 0 to 2n is 4™. For all positive integers n, (27?) > 2, sowe can combine the

n
terms that are strictly less than z—n and end up with something less than 4™ which is a contradiction.

Therefore we start our chain of inequalities with ;—n < (21?) Since there are no primes between n and
2n by assumption, it means that by lemma 2 all primes dividing (2;1) are less than or equal to %n
That’s is quite restrictive. We write (zr:l) in terms of its prime factors using product notation as

R A R A . . . .
(Mpavzm ™) (qu,sz?np ® ")> where R is as defined above. This is less than

2n
IL.s572n) (1 anp | by lemma 1. This is thus less than (2n)V2"~ 1473 by lemma 3 and the fact
pzvan \/2n<p<—p
-3

that there are clearly not more than v2n — 1 primes less than v 2n. Therefore we have shown that if we



n 2n
have a counterexample to the postulate, then ;—n < (Zn)m‘lél?. Multiplying through by 2n gives 4™ <

2n
(Zn)mélT. Taking log, of both sidesgives 2n < 43—n ++v2nlog,(2n), so 23—n < +V2nlog,(2n), so now
V2n < 3log,(2n), so 2n < 9log3(2n). The derivative of the right hand side with respectto n is

;—xgllzjg;) = :—x (ln2 x) (1n29(2)) + c) =2 (1n29(2)) (lnix)) = (1n?(32)) (lnix)) by standard differentiation and

logarithm rules. We can differentiate again with the quotient rule to get the second derivative. This

. 18 1-In (x)
gives (lnz(z)) x2

downwards curvature that has to beat something linear (ie 2n). One can check by computation that
the inequality 2n < 9logZ(2n) fails for n = 427 but not for n = 426, therefore since the curvature is
only downward, 9 log3(2n) will never again cross the 2n line so the inequality will always fail after that.
So any counterexample hasn < 427. Butif 2 < n < 426 we can verify that the theorem holds by
picking one of the primes 3, 5, 7, 13, 23, 43, 83, 163, 317 or 631 depending on what nis. So done.

. For all x greater than e, this is negative, so we will have something with



